

Proposta de teste de avaliação Matemática A 11.º Ano de escolaridade

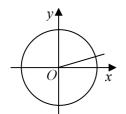
Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

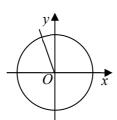
Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Em qual das seguintes figuras pode estar representado, no círculo trigonométrico, o lado extremidade do ângulo de amplitude -1785° cujo lado origem é o semieixo positivo Ox?

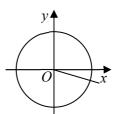
(A)



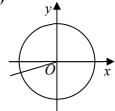
(B)



(C)



(D)



2. Determine o valor de $1 - \frac{\sqrt{2}}{\tan \alpha}$ sabendo que $\alpha \in \left[\pi, \frac{3\pi}{2} \right]$ e que $\sin \left(-\frac{\pi}{2} - \alpha \right) = \frac{\sqrt{6}}{3}$.

Resolva esta questão sem recorrer à calculadora.

- 3. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 1 \tan\left(\frac{2x + \pi}{3}\right)$.
 - **3.1.** Determine:
 - a) o domínio e o contradomínio de f;
 - **b)** a expressão geral dos zeros de *f*.
 - **3.2.** Mostre que a função f tem como período fundamental $\frac{3\pi}{2}$.
 - **3.3.** Justifique que $f(x) f(x+3\pi) = 0$.
- **4.** Quantas soluções tem a equação $3\cos x 2 = 0$ no intervalo $[0,100\pi[$?
 - (A) 99
- **(B)** 100
- **(C)** 200
- **(D)** 199

y 1

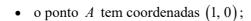
C

0

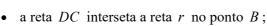
5. Na figura seguinte, está representada, num referencial o.n. *xOy*, uma circunferência de raio 1 centrada na origem do referencial.

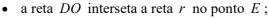
Sabe-se que:

 o ponto D é do segundo quadrante e pertence à circunferência;

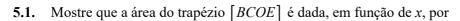


- a reta r é tangente à circunferência no ponto A;
- o ponto C pertence ao eixo Oy e é tal que a reta
 DC é paralela ao eixo Ox;





•
$$x \notin a$$
 amplitude do ângulo orientado $AOD\left(x \in \left]\frac{\pi}{2}, \pi\right[\right)$.



$$A(x) = \frac{2\sin x \cos x - \sin x}{2\cos x}$$

5.2. Recorrendo à calculadora gráfica, determine as coordenadas do único ponto de interseção do gráfico de A com a reta de equação y = x no intervalo $\left[\frac{\pi}{2}, \pi\right]$.

Na sua resposta deve:

- equacionar o problema;
- reproduzir o gráfico da função ou funções que tiver necessidade de visualizar na calculadora, devidamente identificados, incluindo o referencial;
- indicar a abcissa e a ordenada com arredondamento às décimas.
- **6.** Seja (u_n) a sucessão definida por $u_n = 2^{1-2n}$.

Qual das afirmações seguintes é verdadeira?

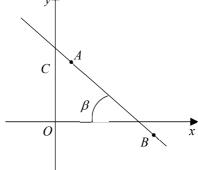
- (A) A sucessão (u_n) é uma progressão aritmética de razão 2.
- **(B)** A sucessão (u_n) é uma progressão aritmética de razão $\frac{1}{4}$.
- (C) A sucessão (u_n) é uma progressão geométrica de razão 2.
- **(D)** A sucessão (u_n) é uma progressão geométrica de razão $\frac{1}{4}$.

7. Considere, fixado um referencial ortonormado do plano, os pontos A(1,4) e B(5,1) e o ângulo β , suplementar à inclinação da reta AB.

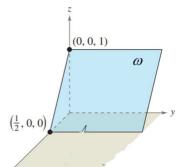
Qual é o valor de $\sin \beta$?

(B)
$$-\frac{3}{5}$$

(C)
$$\frac{1}{2}$$



- 8. Na figura está representado, num referencial o. n. Oxyz, o plano, ω , paralelo ao eixo Oy que passa nos pontos de coordenadas $\left(\frac{1}{2},0,0\right)$ e $\left(0,0,1\right)$.
 - **8.1.** Mostre que uma equação do plano ω é 2x + z = 1.
 - **8.2.** Averigue se o ponto de coordenadas $\left(-\frac{1}{4}, \sqrt{2}, \frac{1}{2}\right)$ pertence ao plano ω .
 - **8.3.** Determine o ponto de interseção do plano ω com a reta r de equação vetorial $(x, y, z) = (1, -1, 0) + k(2, 0, 0), k \in \mathbb{R}$.



- 9. Considere a sucessão (v_n) e termo geral $v_n = \frac{2n-1}{n+3}$.
 - **9.1.** Averigue se $\frac{8}{5}$ é termo da sucessão (v_n) .
 - **9.2.** Mostre que a sucessão (v_n) é:
 - a) monótona;
 - b) limitada.
- 10. A que é igual $\lim (\sqrt{n+3} \sqrt{n})$?

FIM

Cotações:

	Item																	
	Cotação (em pontos)																	
1.	2.	3.1.a)	3.2.b)	3.2.	3.3.	4.	5.1.	5.2.	6.	7.	8.1.	8.2.	8.3.	9.1.	9.2.a)	9.2.b)	10.	Total
10	12	12	12	12	10	10	10	12	10	10	12	12	12	10	12	12	10	200

Proposta de resolução

Resposta: (A)

2.
$$\sin\left(-\frac{\pi}{2} - \alpha\right) = \frac{\sqrt{6}}{3} \Leftrightarrow -\sin\left(\frac{\pi}{2} + \alpha\right) = \frac{\sqrt{6}}{3} \Leftrightarrow -\cos\alpha = \frac{\sqrt{6}}{3} \Leftrightarrow \cos\alpha = -\frac{\sqrt{6}}{3}$$

$$\operatorname{Como } \tan^{2}\alpha + 1 = \frac{1}{\cos^{2}\alpha}, \text{ tem-se:}$$

$$\tan^{2}\alpha + 1 = \frac{1}{\left(\frac{\sqrt{6}}{3}\right)^{2}} \Leftrightarrow \tan^{2}\alpha + 1 = \frac{1}{\frac{6}{9}} \Leftrightarrow \tan^{2}\alpha + 1 = \frac{9}{6} \Leftrightarrow \tan^{2}\alpha + 1 = \frac{3}{2} \Leftrightarrow$$

$$\Leftrightarrow \tan^{2}\alpha = \frac{3}{2} - 1 \Leftrightarrow \tan^{2}\alpha = \frac{1}{2} \Leftrightarrow \tan^{2}\alpha = \frac{2}{4} \Leftrightarrow \tan\alpha = \frac{\sqrt{2}}{2}$$

$$\operatorname{Logo}, 1 - \frac{\sqrt{2}}{\tan\alpha} = 1 - \frac{\sqrt{2}}{\sqrt{2}} = 1 - 2 = -1$$

3.1.

a)
$$D_{f} = \left\{ x \in \mathbb{R} : \frac{2x + \pi}{3} \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\} = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{4} + \frac{3k\pi}{2}, k \in \mathbb{Z} \right\}$$
$$D_{f}^{'} = \mathbb{R}$$

Cálculos auxiliares:

$$\frac{2x+\pi}{3} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow 4x + 2\pi = 3\pi + 6k\pi, k \in \mathbb{Z} \Leftrightarrow 4x = \pi + 6k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{4} + \frac{3k\pi}{2}, k \in \mathbb{Z}$$

b)
$$f(x) = 0 \Leftrightarrow 1 - \tan\left(\frac{2x + \pi}{3}\right) = 0 \Leftrightarrow \tan\left(\frac{2x + \pi}{3}\right) = 1 \Leftrightarrow$$
$$\Leftrightarrow \frac{2x + \pi}{3} = \frac{\pi}{4} + k\pi, \ k \in \mathbb{Z} \Leftrightarrow 8x + 4\pi = 3\pi + 12k\pi, \ k \in \mathbb{Z} \Leftrightarrow$$
$$\Leftrightarrow 8x = -\pi + 12k\pi, \ k \in \mathbb{Z} \Leftrightarrow x = -\frac{\pi}{8} + \frac{3k\pi}{2}, \ k \in \mathbb{Z}$$

A expressão geral dos zeros de $f \in x = -\frac{\pi}{8} + \frac{3k\pi}{2}, k \in \mathbb{Z}$

3.2. Seja P o período positivo mínimo da função f.

Se
$$x \in D_f$$
, então $x + P \in D_f$ porque $D_f = \mathbb{R}$.

$$\forall x \in \mathbb{R}, \ f(x+P) = f(x) \Leftrightarrow$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \ 1 - \tan\left(\frac{2(x+P) + \pi}{3}\right) = 1 - \tan\left(\frac{2x + \pi}{3}\right), \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \ \tan\left(\frac{2x+2P+\pi}{3}\right) = \tan\left(\frac{2x+\pi}{3}\right), \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow \forall x \in \mathbb{R}, \ \tan\left(\frac{2x+\pi}{3} + \frac{2P}{3}\right) = \tan\left(\frac{2x+\pi}{3}\right), \ k \in \mathbb{Z}$$

Como π é o período positivo mínimo da função tangente e P é o menor valor positivo para o qual a proposição anterior é verdadeira, terá de ser $\frac{2P}{3} = \pi$, pelo que $P = \frac{3\pi}{2}$.

Logo, a função f é periódica de período fundamental $P = \frac{3\pi}{2}$.

- **3.3.** Como 3π é período da função f, pois $3\pi = 2 \times \frac{3\pi}{2}$, então $f(x) = f(x + 3\pi)$, pelo que $f(x) f(x + 3\pi) = 0$.
- **4.** $3\cos x 2 = 0 \land x \in [0,100\pi] \Leftrightarrow \cos x = \frac{2}{3} \land x \in [0,100\pi]$

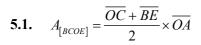
Esta equação tem duas soluções em cada um dos intervalos

$$[0, 2\pi[, [2\pi, 4\pi[, ..., [98\pi, 100\pi[.$$

Como o intervalo $\left[0,100\pi\right[$ se pode decompor na reunião de 50

intervalos deste tipo, podemos concluir que a equação tem

 $500 \times 2 = 100$ soluções.



$$\overline{AB} = \overline{OC} = |\sin x| = \sin x$$
 (Como $x \in \left[\frac{\pi}{2}, \pi \right], \sin x > 0$)

$$\overline{AE} = |\tan x| = -\tan x$$
 (Como $x \in \left[\frac{\pi}{2}, \pi \right], \tan x < 0$)

$$\overline{BE} = \overline{AB} + \overline{AE} = \sin x - \tan x$$

$$\overline{OA} = 1$$

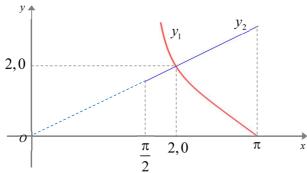
Assim:
$$A_{[BCOE]} = \frac{\overline{OC} + \overline{BE}}{2} \times \overline{OA} = \frac{\sin x + \sin x - \tan x}{2} \times 1 =$$

$$= \frac{2\sin x - \tan x}{2} = \frac{2\sin x - \frac{\sin x}{\cos x}}{2} = \frac{2\sin x \cos x - \sin x}{2\cos x}$$

5.2. A abcissa do ponto de interseção do gráfico de A e da reta de equação y=x no intervalo $\left[\frac{\pi}{2}, \pi\right]$ é a solução da condição $\frac{2\sin x \cos x - \sin x}{2\cos x} = x \land x \in \left[\frac{\pi}{2}, \pi\right]$.

Fazendo $y_1 = \frac{2\sin x \cos x - \sin x}{2\cos x}$ e $y_2 = x$ no intervalo $\left[\frac{\pi}{2}, \pi\right]$, obtivemos a seguinte representação

gráfica:



O gráfico da função A e a reta de equação y = x intersetam-se no ponto de coordenadas (a, a) com $a \approx 2, 0$.

6.
$$u_n = 2^{1-2n}$$

$$u_{n+1} = 2^{1-2(n+1)} = 2^{1-2n-2} = 2^{-1-2n}$$

$$\frac{u_{n+1}}{u_n} = \frac{2^{-1-2n}}{2^{1-2n}} = 2^{-2} = \frac{1}{4}$$

 (u_n) é uma progressão geométrica de razão $\frac{1}{4}$.

Resposta: (D)

7. A inclinação da reta AB é igual a $\pi - \beta$, pelo que $\tan(\pi - \beta)$ é igual ao declive da reta AB:

$$\tan(\pi - \beta) = \frac{1 - 4}{5 - 1} \Leftrightarrow -\tan\beta = \frac{-3}{4} \Leftrightarrow \tan\beta = \frac{3}{4}$$

Dado que $\tan^2 \beta + 1 = \frac{1}{\cos^2 \beta}$, tem-se:

$$\frac{9}{16} + 1 = \frac{1}{\cos^2 \beta} \Leftrightarrow \frac{25}{16} = \frac{1}{\cos^2 \beta} \Leftrightarrow \cos^2 \beta = \frac{16}{25} \Leftrightarrow \cos \beta = \frac{4}{5}$$

Por outro lado, como tan $\beta = \frac{\sin \beta}{\cos \beta}$, vem:

$$\frac{3}{4} = \frac{\sin \beta}{\frac{4}{5}} \iff \sin \beta = \frac{3}{4} \times \frac{4}{5} \iff \sin \beta = \frac{3}{5}$$

Resposta: (A)

8.1. Por exemplo, o vetor de coordenadas (0, 1, 0) é vetor diretor do eixo Oy.

$$\left(\frac{1}{2}, 0, 0\right) - \left(0, 0, 1\right) = \left(\frac{1}{2}, 0, -1\right)$$

 ω é o plano que passa pelo ponto de coordenadas (0, 0, 1) e tem a direção dos vetores de

coordenadas
$$(0, 1, 0)$$
 e $\left(\frac{1}{2}, 0, -1\right)$.

Seja $\vec{n}(a, b, c)$ um vetor normal ao plano ω . Tem-se:

$$\begin{cases} (a, b, c) \cdot (0, 1, 0) = 0 \\ (a, b, c) \cdot \left(\frac{1}{2}, 0, -1\right) = 0 \end{cases} \Leftrightarrow \begin{cases} b = 0 \\ \frac{1}{2}a - c = 0 \end{cases} \Leftrightarrow \begin{cases} b = 0 \\ a = 2c \end{cases}$$

Portanto, $\vec{n}(2c, 0, c)$.

Por exemplo, para c = 1, $\vec{n}(2, 0, 1)$.

$$2(x-0)+0(y-0)+1(z-1)=0 \Leftrightarrow 2x+z-1=0 \Leftrightarrow 2x+z=1$$

Logo, uma equação do plano ω é 2x + z = 1.

8.2.
$$2\left(-\frac{1}{4}\right) + \frac{1}{2} = 1 \Leftrightarrow -\frac{1}{2} + \frac{1}{2} = 1 \Leftrightarrow 0 = 1$$
 (Proposição falsa)

Logo, o ponto de coordenadas $\left(-\frac{1}{4},\sqrt{2},\frac{1}{2}\right)$ não pertence ao plano $\,\omega\,.\,$

8.3.
$$(x, y, z) = (1, -1, 0) + k(2, 0, 0), k \in \mathbb{R} \Leftrightarrow \begin{cases} x = 1 + 2k \\ y = -1 \\ z = 0 \end{cases}, k \in \mathbb{R}$$

Ponto genérico da reta r: (1+2k, -1, 0)

Para que este ponto pertença ao plano ω , as suas coordenadas terão de satisfazer a condição 2x + z = 1:

$$2(1+2k)+0=1 \Leftrightarrow 2+4k=1 \Leftrightarrow 4k=-1 \Leftrightarrow k=-\frac{1}{4}$$

Para
$$k = -\frac{1}{4}$$
, $1 + 2k = 1 - \frac{2}{4} = -\frac{1}{2}$

Logo, a reta r e o plano ω intersetam-se no ponto de coordenadas $\left(\frac{1}{2}, -1, 0\right)$.

9.1.
$$v_n = \frac{8}{5} \Leftrightarrow \frac{2n-1}{n+3} = \frac{8}{5} \Leftrightarrow 5(2n-1) = 8(n+3) \Leftrightarrow 10n-5 = 8n+24 \Leftrightarrow 2n = 29 \Leftrightarrow n = \frac{29}{2}$$

$$\text{Como } \frac{29}{2} \notin \mathbb{N}, \frac{8}{5} \text{ não \'e termo da sucessão } (v_n).$$

9.2.

a)
$$v_{n+1} - v_n = \frac{2(n+1)-1}{n+1+3} - \frac{2n-1}{n+3} = \frac{2n+1}{n+4} - \frac{2n-1}{n+3} = \frac{(n+3)(2n+1)-(n+4)(2n-1)}{(n+4)(n+3)} = \frac{2n^2+n+6n+3-2n^2+n-8n+4}{(n+4)(n+3)} = \frac{7}{(n+4)(n+3)}$$

Para todo o $n \in \mathbb{N}$, 7 > 0 e (n+4)(n+3) > 0

Logo, $\forall n \in \mathbb{N}, v_{n+1} - v_n > 0$, pelo que a sucessão (v_n) é monótona crescente.

b)
$$v_n = \frac{2n-1}{n+3} = \frac{2(n+3)-7}{n+3} = 2 - \frac{7}{n+3}$$

$$\forall n \in \mathbb{N}, \ 0 < \frac{1}{n+3} \le \frac{1}{4} \Leftrightarrow \forall n \in \mathbb{N}, \ -\frac{7}{4} \le \frac{-7}{n+3} < 0 \Leftrightarrow$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \ \frac{1}{4} \le 2 - \frac{7}{n+3} < 2 \Leftrightarrow \forall n \in \mathbb{N}, \ \frac{1}{4} \le v_n < 2$$

Logo, a sucessão (v_n) é limitada, pois é minorada (por exemplo, por $\frac{1}{4}$) e majorada (por exemplo, por 2).

10.
$$\lim \left(\sqrt{n+3} - \sqrt{n}\right) = \lim \frac{\left(\sqrt{n+3} - \sqrt{n}\right)\left(\sqrt{n+3} + \sqrt{n}\right)}{\sqrt{n+3} + \sqrt{n}} = \lim \frac{n+3-n}{\sqrt{n+3} + \sqrt{n}} = \lim \frac{3}{\sqrt{n+3} + \sqrt{n}} = \frac{3}{+\infty} = 0$$

Resposta: (C)